欢迎访问深圳市中小企业公共服务平台电子信息窗口
耐压大于6500V!北大团队解决GaN三个技术难题,研发新型氮化镓高压器件
2024-01-10 来源:贤集网
624

关键词: 氮化镓 晶体管 芯片

近期,北京大学团队研发增强型 p 型栅氮化镓(GaN)晶体管,并首次在高达 4500V 工作电压下实现低动态电阻工作能力。

研究人员在 GaN 功率器件的表面引入新型有源钝化结构,在蓝宝石衬底成功制备具有该结构的新型器件。所制备的器件击穿电压得到大幅度提升,实现大于 6500V 的耐压能力。通过提供低成本的增强型 GaN 功率器件解决方案,攻克了制约 GaN 功率器件近 30 年的动态电阻难题,打破了“GaN 功率器件不适用于千伏级工业电子应用”的固有观念。


氮化镓为何物?



在被称作发光二极管的节能光源中,氮化镓已经使用了数十年。在一些平凡的科技产品,如蓝光碟片播放器里,氮化镓也有应用。但耐热和耐辐射的特性,让它在军事和太空领域应用广泛。如今,反弹道导弹雷达和美国空军用来追踪空间碎片的雷达系统“太空篱笆”也使用了氮化镓芯片。

第一代半导体是硅,主要解决数据运算、存储的问题;第二代半导体是以砷化镓为代表,它被应用到于光纤通讯,主要解决数据传输的问题;第三代半导体以氮化镓为代表,它在电和光的转化方面性能突出,在微波信号传输方面的效率更高,所以可以被广泛应用到照明、显示、通讯等各大领域。

氮化镓(化学式GaN)被称为“终极半导体材料”,可以用于制造用途广泛、性能强大的新一代微芯片,属于所谓宽禁带(wide-bandgap,氮化镓的禁带宽度是3.4 eV电子伏特)半导体之列,是研制高效率、高功率微电子器件、光电子器件的新型半导体材料。

氮化镓,分子式GaN,英文名称Gallium nitride,是氮和镓的化合物,是一种直接能隙(direct bandgap)的半导体,自1990年起常用在发光二极管中。此化合物结构类似纤锌矿,硬度很高。氮化镓的能隙很宽,为3.4电子伏特,可以用在高功率、高速的光电元件中,其单芯片亮度理论上可以达到过去的10倍。例如氮化镓可以用在紫光的激光二极管,可以在不使用非线性半导体泵浦固体激光器(Diode-pumped solid-state laser)的条件下,产生紫光(405nm)激光。

氮化镓具有的直接带隙宽、原子键强、热导率高、化学稳定性好、抗辐射能力强、具有较高的内、外量子效率、发光效率高、高强度和硬度(其抗磨力接近于钻石)等特点和性能可制成高效率的半导体发光器件——发光二极管(Light-emittingdiode,简称为LED)和激光器(Laserdiode,简称为LD)。并可延伸至白光LED和蓝光LD。抗磨力接近于钻石特性将有助于开启在触控屏幕、太空载具以及射频(RF) MEMS等要求高速、高振动技术的新应用。


汽车是最具前途的应用领域之一



汽车被认为是氮化镓最有前途的应用领域之一。在2019东京车展上,丰田汽车曾展出一款与他方共同研发的all-GaN概念车。据介绍,该款车配装使用氮化镓元器件的高效逆变器,能使二氧化碳减排至少20%。

随着电动化、智能化的发展,今天的汽车比以往任何时候都集成了更多的电力系统。随着这一需求的出现,电气工程师需要创新技术与成本上都可行的新设计——重量轻、结构紧凑、耐久性强的系统,这样汽车的性能才不会受到影响。为此,一些车企的解决方案转向氮化镓场效应晶体管(GaN FET)。

据介绍,氮化镓将在新能源汽车领域开启新天地,主要有三种应用:车载充电器,用于给高压电池充电;DC/DC转换器,将来自高压电池的电力转换给汽车上其他电子设备;牵引驱动或电机控制,可以用于驱动电机。

Alex Zahabizadeh进一步解释道,工程师可以利用氮化镓使混合动力和电动汽车达到现有解决方案两倍的功率密度,使得充电速度更快,运行更稳定可靠并且车载充电系统效率更高。氮化镓较低的开关损耗可以提高效率,从而减轻车载散热系统的负担并增加电动汽车的续驶里程。

此外,氮化镓场效应晶体管更高的工作频率,还可将功率磁性器件的尺寸减小约60%,从而降低系统成本并提高整体功率密度。基于氮化镓在600~650V额定设备上更加优良的开关性能,其最直接的应用将是汽车高压DC/DC转换器和车载AC/DC充电器。

在汽车领域,车企正在尝试将氮化镓用于未来的车载充电器和高压直流转换器中,预计量产车最快将在2023年有可能搭载氮化镓元器件。如果车企的判断准确,那么2024~2026年,更经济实用的电动汽车数量的增加将带动氮化镓元器件获得更广泛的应用。


实现千伏级别电压等级行业应用



GaN 半导体材料因具备卓越的耐压与输运特性,有望推动电子设备在系统效率提升、系统微型化发展方面取得革命性进展。

目前,GaN 功率器件的电压等级并非受限于击穿电压,而是被局限于高压工作后的动态电阻退化。动态电阻退化源于器件表面的深能级陷阱响应速度极为缓慢,一旦填充电子需要很长时间才能恢复,这些表面负电荷排斥沟道中的电子引起动态电阻退化。同时,GaN 功率器件又依赖于表面深能级陷阱态,为导电沟道提供载流子。因此,动态电阻退化被认为是 GaN 功率器件的本征特性之一。

经历近 20 年的研究,目前业界普遍采用 3 至 4 个场板结构,可以将 650V 电压等级的 GaN 功率器件的动态电阻退化控制在可接受的程度。然而,对于更高电压等级的器件,所需场板数量成比例增加,每增加一个场板就需要多一次光刻。若想实现 6500V 的 GaN 功率器件,则需要几十次额外的光刻,因此失去了现实意义。有鉴于此,工业界与学术界形成普遍的共识:GaN 功率器件不适用于千伏级别的电压等级。

经过分析,魏进发现 GaN 功率器件有类似之处。“这说明 GaN 器件的阈值电压本质上是动态变化的,而非由材料缺陷所导致。”他说。后续很长时间,魏进都在研究如何验证这一理论。他与所在团队发明了一种测试方法,对器件内部的存储电荷量与阈值电压漂移量分别测试,发现这二者完全吻合。基于此,他们提出 GaN 功率器件动态阈值电压理论,让“动态阈值电压”概念成为 GaN 功率器件的普遍共识。

目前,成熟的超高压功率器件是垂直型 Si 绝缘栅双极晶体管或 Si 晶闸管,但它们的开关频率非常低。一种解决方案是采用宽禁带半导体 SiC 功率器件,以大幅度提高开关频率。据研究团队估计,在大规模量产条件下,同等电流水平的 GaN 器件的成本接近 Si 器件,但是却能带来性能上的“飞跃”。

目前,美国在 GaN 超高压器件领域投入大量研发资源,而中国在该领域的研究处于世界领先的水平。然而,中国相关配套技术的研发仍未启动。魏进表示:“希望我们的研究结果能够鼓励国内在 GaN 超高压器件的研发投入,推动配套技术从实验室进入到产品化阶段的研发。”

后续,魏进将与团队进一步探索 GaN 超高压功率器件的性能边界,尝试通过技术创新突破一个个曾经认为的性能极限,从而展示 GaN 功率器件的巨大潜力。据悉,研究人员已申请多项相关专利,同时也在与企业界保持沟通,探索合作开发的具体事项。与此同时,他们也将积极研究 GaN 功率器件的应用技术,与其他合作者及产业界合作,共同探究 GaN 功率器件在应用中问题,并提出相关解决方案。